Deutsche Ausgabe: DOI: 10.1002/ange.201506430 Internationale Ausgabe: DOI: 10.1002/anie.201506430

Highly Selective Artificial Cholesteryl Crown Ether K⁺-Channels

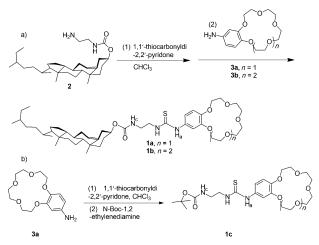
Zhanhu Sun, Mihail Barboiu,* Yves-Marie Legrand, Eddy Petit, and Alexandru Rotaru

Abstract: The bacterial KcsA channel conducts K^+ cations at high rates while excluding Na^+ cations. Herein, we report an artificial ion-channel formed by H-bonded stacks of crownethers, where K^+ cation conduction is highly preferred to Na^+ cations. The macrocycles aligned along the central pore surround the K^+ cations in a similar manner to the water around the hydrated cation, compensating for the energetic cost of their dehydration. In contrast, the Na^+ cation does not fit the macrocyclic binding sites, so its dehydration is not completely compensated. The present highly K^+ -selective macrocyclic channel may be regarded as a biomimetic of the KcsA channel.

he exchange of ions across the lipid bilayer membrane is a prerequisite for many physiological processes.^[1,2] Natural ion channels play significant roles in supporting the metabolism of living cells, and their dysfunction can lead to a number of diseases, even death.^[3] Among ion channels, the KcsA K⁺ channel is highly selective for K⁺ cations. It has a hydrophobic conical pore and the selectivity filter in the middle, affording closely spaced carbonyl sites for the selective coordination of the dehydrated K⁺ cations.^[4]

Biomimetic approaches have been used to develop artificial supramolecular channels with the hope to reach the high selectivity of the KcsA channel.[5-7] Barrel-stave systems,^[8] G-quadruplex,^[9] lariat crown ethers,^[10] hydraphiles^[11] or peptide-appended crownethers^[12,13] have been intensively used to construct ion-channels for selective ionic translocation. We are interested in the possibility to selforganize heteroditopic ureido crown ethers through H-bonding for suitable membrane ion channel transport functions.^[14] This approach has been extended to light-responsive channels, and the structure-activity relationships have been determined.^[15] We know from our previous studies, that lipophilic ureido crown ethers disrupt the bilayer membrane at low concentration, showing rare single channel openings. At higher concentration, a rich array of interconverting channel conductance states are observed for K⁺ cations. The channels arise from H-bonded stacks of crown ethers where transport of cations would occur by the macrocycles around

 [*] Dr. Z. Sun, Dr. M. Barboiu, Dr. Y.-M. Legrand, E. Petit Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes, ENSCM-UM-CNRS UMR-5635 Place E. Bataillon, CC 047, F-34095, Montpellier Cedex 5 (France) E-mail: mihail-dumitru.barboiu@univ-montp2.fr
Dr. A. Rotaru Petru Poni Institute of


Macromolecular Chemistry of Romanian Academy 41A Aleea Gr. Ghica Voda, Iasi (Romania)

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201506430.

Angew. Chem. 2015, 127, 14681-14685

a central large pore.^[14b] Within this context we presumed that the entropic cost of cation binding/transport must be far larger than the case where these macrocyclic receptors present a restricted conformational entropy in the bilayer. Their self-assembly can influence their dynamic distribution and the stability of the channels within the bilayer membrane. Within this context, steroids are important cyclic compounds,^[16] intensively used in the construction and stabilization of many ion channel superstructures.^[16-18] Based on these observations, we designed and prepared in this study, a series of cholesteryl-thioureido-ethylamide crown ethers that selfassemble into robust ion-channels and show a remarkably high selectivity for the K⁺ against Na⁺ cations, close to that of natural channels. The thioureido-ethylamide linker connecting crown ether and cholesterol moieties form H-bonded arrays of channel-type stacks of crown ethers disposed in very close proximity pointing towards the center of the channel and expected to serve as ion selectivity filters.^[19] Cholesterol moieties aiming to stabilize the channels, act as anchoring arms inducing low diffusivity, clustering, and higher preorganization of the macrocycles in lipid bilayers.^[20]

The synthesis of key compounds 1a-c is presented in Scheme 1. 3β -Cholest-5-en-3-yl-*N*-(2-*a*minoethyl) carbamate

Scheme 1. Synthesis of a) cholesteryl thioureidoethylamide-15-crown-5ether **1a**, and cholesteryl thioureidoethylamide-18-crown-6-ether **1b** and b) of the reference *tert*-butylthioureidoethylamide-15-crown-5 ether, **1c**.

2 was prepared according to the literature^[21] and then converted to 3β -cholest-5-en-3-yl-*N*-(2-isothiocyanatoethyl)-carbamate,^[22] which was reacted in situ with the corresponding 4-amino-benzo-crown-ethers **3a**/**3b**, to provide cholesteryl-thioureido-ethylamide crown ethers **1a** and **1b**. The macrocyclic heads are benzo-15-crown-5 in **1a** and benzo-18-